Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | ||||
4 | 5 | 6 | 7 | 8 | 9 | 10 |
11 | 12 | 13 | 14 | 15 | 16 | 17 |
18 | 19 | 20 | 21 | 22 | 23 | 24 |
25 | 26 | 27 | 28 | 29 | 30 | 31 |
Tags
- L2P
- Mask diffusion
- Mask-and-replace diffusion strategy
- Class Incremental
- VQ-diffusion
- Discrete diffusion
- VQ-VAE
- mmcv
- CVPR2022
- timm
- state_dict()
- Vector Quantized Diffusion Model for Text-to-Image Synthesis
- learning to prompt
- CIL
- prompt learning
- Markov transition matrix
- Class Incremental Learning
- Img2pose
- learning to prompt for continual learning
- Face Pose Estimation
- DualPrompt
- Energy-based model
- 베이지안 정리
- img2pose: Face Alignment and Detection via 6DoF
- requires_grad
- Continual Learning
- ENERGY-BASED MODELS FOR CONTINUAL LEARNING
- Facial Landmark Localization
- Face Alignment
- PnP algorithm
Archives
- Today
- Total
Computer Vision , AI
[One-page summary] Monocular Depth Estimation using Diffusion Models by Saxena et al. 본문
Paper_review[short]
[One-page summary] Monocular Depth Estimation using Diffusion Models by Saxena et al.
Elune001 2024. 1. 16. 00:15● Summary: Monocular depth estimation using diffusion model with noisy and incomplete depth map in training data
● Approach highlight
-
Fill missing depth: for diffusion process, fill indoor missing depth(window, mirror) by nearest interpolating and fill outdoor missing depth(sky) with a maximum depth
-
Step-Unrolled Denoising Diffusion
● Main Results
● Discussion
- To fill the outdoor missing depth map they use a segmentation model. I think If the result of the segmentation model is not perfect this method makes another noise and incompleteness
- Inference time (Diffusion-based model)