Notice
Recent Posts
Recent Comments
Link
| 일 | 월 | 화 | 수 | 목 | 금 | 토 |
|---|---|---|---|---|---|---|
| 1 | ||||||
| 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| 16 | 17 | 18 | 19 | 20 | 21 | 22 |
| 23 | 24 | 25 | 26 | 27 | 28 | 29 |
| 30 |
Tags
- timm
- 베이지안 정리
- Class Incremental Learning
- Face Alignment
- Face Pose Estimation
- prompt learning
- Energy-based model
- Discrete diffusion
- requires_grad
- learning to prompt for continual learning
- mmcv
- DualPrompt
- Mask-and-replace diffusion strategy
- Class Incremental
- Mask diffusion
- img2pose: Face Alignment and Detection via 6DoF
- Continual Learning
- state_dict()
- CVPR2022
- learning to prompt
- Img2pose
- VQ-diffusion
- CIL
- Facial Landmark Localization
- ENERGY-BASED MODELS FOR CONTINUAL LEARNING
- PnP algorithm
- L2P
- Markov transition matrix
- Vector Quantized Diffusion Model for Text-to-Image Synthesis
- VQ-VAE
Archives
- Today
- Total
Computer Vision , AI
[One-page summary] Monocular Depth Estimation using Diffusion Models by Saxena et al. 본문
Paper_review[short]
[One-page summary] Monocular Depth Estimation using Diffusion Models by Saxena et al.
Elune001 2024. 1. 16. 00:15● Summary: Monocular depth estimation using diffusion model with noisy and incomplete depth map in training data
● Approach highlight
-
Fill missing depth: for diffusion process, fill indoor missing depth(window, mirror) by nearest interpolating and fill outdoor missing depth(sky) with a maximum depth

-
Step-Unrolled Denoising Diffusion

● Main Results

● Discussion
- To fill the outdoor missing depth map they use a segmentation model. I think If the result of the segmentation model is not perfect this method makes another noise and incompleteness
- Inference time (Diffusion-based model)