Notice
Recent Posts
Recent Comments
Link
| 일 | 월 | 화 | 수 | 목 | 금 | 토 |
|---|---|---|---|---|---|---|
| 1 | ||||||
| 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| 16 | 17 | 18 | 19 | 20 | 21 | 22 |
| 23 | 24 | 25 | 26 | 27 | 28 | 29 |
| 30 |
Tags
- CVPR2022
- CIL
- PnP algorithm
- Mask-and-replace diffusion strategy
- Face Pose Estimation
- VQ-VAE
- L2P
- ENERGY-BASED MODELS FOR CONTINUAL LEARNING
- Mask diffusion
- timm
- learning to prompt
- 베이지안 정리
- Class Incremental
- prompt learning
- state_dict()
- learning to prompt for continual learning
- Markov transition matrix
- Continual Learning
- Energy-based model
- mmcv
- VQ-diffusion
- Img2pose
- Class Incremental Learning
- img2pose: Face Alignment and Detection via 6DoF
- Vector Quantized Diffusion Model for Text-to-Image Synthesis
- Discrete diffusion
- DualPrompt
- Facial Landmark Localization
- Face Alignment
- requires_grad
Archives
- Today
- Total
Computer Vision , AI
[One-page summary] DualPrompt: Complementary Prompting for Rehearsal-free Continual Learning (ECCV 2022) By Wang et al. 본문
Paper_review[short]
[One-page summary] DualPrompt: Complementary Prompting for Rehearsal-free Continual Learning (ECCV 2022) By Wang et al.
Elune001 2023. 4. 18. 17:42●Summary: Learning two disjoint prompt spaces makes rehearsal-free prompt-based continual learning more effectively
●Approach highlight
○Using task-invariant General prompt(L_g) at ViT 1~2nd layer and task-specific Expert Prompt(# of task ×L_e) at ViT 3~5th layer

○Prefix tuning: before MSA, concatenate key prompt to hidden representation of key and value prompt to hidden representation of value, respectively

●Main Results:

●Discussion
○Can be generalized? (Isn’t it specialized for the ViT?)