Notice
Recent Posts
Recent Comments
Link
| 일 | 월 | 화 | 수 | 목 | 금 | 토 |
|---|---|---|---|---|---|---|
| 1 | ||||||
| 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| 16 | 17 | 18 | 19 | 20 | 21 | 22 |
| 23 | 24 | 25 | 26 | 27 | 28 | 29 |
| 30 |
Tags
- VQ-VAE
- Facial Landmark Localization
- DualPrompt
- ENERGY-BASED MODELS FOR CONTINUAL LEARNING
- Class Incremental
- VQ-diffusion
- timm
- Markov transition matrix
- prompt learning
- CIL
- Img2pose
- Face Alignment
- Continual Learning
- requires_grad
- Vector Quantized Diffusion Model for Text-to-Image Synthesis
- img2pose: Face Alignment and Detection via 6DoF
- Discrete diffusion
- Face Pose Estimation
- learning to prompt
- Mask diffusion
- Class Incremental Learning
- PnP algorithm
- learning to prompt for continual learning
- Mask-and-replace diffusion strategy
- state_dict()
- 베이지안 정리
- mmcv
- L2P
- CVPR2022
- Energy-based model
Archives
- Today
- Total
Computer Vision , AI
[One-page summary] Learning to Prompt for Continual Learning (CVPR 2022) By Wang et al. 본문
Paper_review[short]
[One-page summary] Learning to Prompt for Continual Learning (CVPR 2022) By Wang et al.
Elune001 2023. 4. 18. 17:20Category: continual learning (class incremental)
●Summary: Use prompt with a pre-trained model for rehearsal buffer-free and task-agnostic continual learning

●Approach highlight
○Prompt pool memory space allows rehearsal buffer-free and task-agnostic

○ Penalize frequently-used prompts by using prompt frequency table H_t at training time for the diversity of prompt (1)

○ At training-time, If query(task) and key(prompt) belong to the same task, make them close

●Main Results

●Discussion
○New perspective to solve incremental learning using prompt
○How to determine the total number of prompts M in a prompt pool
reference
total summary: http://dsba.korea.ac.kr/seminar/?mod=document&uid=2574 , DSBA seminar 2022-10-14, Jaehyuk Heo